Riemannian Hamiltonian Variational Autoencoder
The Riemannian Hamiltonian Variational Autoencoder (RHVAE) is a variant of the Hamiltonian Variational Autoencoder (HVAE) that uses concepts from Riemannian geometry to improve the sampling of the latent space representation. As the HVAE, the RHVAE uses Hamiltonian dynamics to improve the sampling of the latent. However, the RHVAE accounts for the geometry of the latent space by learning a Riemannian metric tensor that is used to compute the kinetic energy of the dynamical system. This allows the RHVAE to sample the latent space more evenly while learning the curvature of the latent space.
For the implementation of the RHVAE in AutoEncoderToolkit.jl, the RHVAE requires two arguments to construct: the original VAE as well as a separate neural network used to compute the metric tensor. To facilitate the dispatch of the necessary functions associated with this second network, we also provide a MetricChain struct.
RHVAEs require the computation of nested gradients. This means that the AutoDiff framework must differentiate a function of an already AutoDiff differentiated function. This is known to be problematic for Julia's AutoDiff backends. See details below to understand how to we circumvent this problem.
Reference
Chadebec, C., Mantoux, C. & Allassonnière, S. Geometry-Aware Hamiltonian Variational Auto-Encoder. Preprint at http://arxiv.org/abs/2010.11518 (2020).
MetricChain struct
AutoEncoderToolkit.RHVAEs.MetricChain — TypeMetricChain <: AbstractMetricChainA MetricChain is used to compute the Riemannian metric tensor in the latent space of a Riemannian Hamiltonian Variational AutoEncoder (RHVAE).
Fields
mlp::Flux.Chain: A multi-layer perceptron (MLP) consisting of the hidden layers. The inputs are first run through this MLP.diag::Flux.Dense: A dense layer that computes the diagonal elements of a lower-triangular matrix. The output of themlpis fed into this layer.lower::Flux.Dense: A dense layer that computes the off-diagonal elements of the lower-triangular matrix. The output of themlpis also fed into this layer.
The outputs of diag and lower are used to construct a lower-triangular matrix used to compute the Riemannian metric tensor in latent space.
Note
If the dimension of the latent space is n, the number of neurons in the output layer of diag must be n, and the number of neurons in the output layer of lower must be n * (n - 1) ÷ 2.
Example
mlp = Flux.Chain(Dense(10, 10, relu), Dense(10, 10, relu))
diag = Flux.Dense(10, 5)
lower = Flux.Dense(10, 15)
metric_chain = MetricChain(mlp, diag, lower)RHVAE struct
AutoEncoderToolkit.RHVAEs.RHVAE — TypeRHVAE{
V<:VAE{<:AbstractVariationalEncoder,<:AbstractVariationalDecoder}
} <: AbstractVariationalAutoEncoderA Riemannian Hamiltonian Variational AutoEncoder (RHVAE) as described in Chadebec, C., Mantoux, C. & Allassonnière, S. Geometry-Aware Hamiltonian Variational Auto-Encoder. Preprint at http://arxiv.org/abs/2010.11518 (2020).
The RHVAE is a type of Variational AutoEncoder (VAE) that incorporates a Riemannian metric in the latent space. This metric is computed by a MetricChain, which is a struct that contains a multi-layer perceptron (MLP) and two dense layers for computing the elements of a lower-triangular matrix.
The inverse metric is computed as follows:
G⁻¹(z) = ∑ᵢ₌₁ⁿ Lψᵢ Lψᵢᵀ exp(-‖z - cᵢ‖₂² / T²) + λIₗ
where L_ψᵢ is computed by the MetricChain, T is the temperature, λ is a regularization factor, and each column of centroids are the cᵢ.
Fields
vae::V: The underlying VAE, whereVis a subtype ofVAEwith anAbstractVariationalEncoderand anAbstractVariationalDecoder.metric_chain::MetricChain: TheMetricChainthat computes the Riemannian metric in the latent space.centroids_data::AbstractArray: An array where the last dimension represents a data point xᵢ from which the centroids cᵢ are computed by passing them through the encoder.centroids_latent::AbstractMatrix: A matrix where each column represents a centroid cᵢ in the inverse metric computation.L::AbstractArray{<:Number, 3}: A 3D array where each slice represents a Lψᵢ matrix. Lψᵢ can intuitively be seen as the triangular matrix in the Cholesky decomposition of G⁻¹(centroids_latentᵢ) up to a regularization factor.M::AbstractArray{<:Number, 3}: A 3D array where each slice represents a Lψᵢ Lψᵢᵀ.T::Number: The temperature parameter in the inverse metric computation.λ::Number: The regularization factor in the inverse metric computation.
Forward pass
Metric Network
AutoEncoderToolkit.RHVAEs.MetricChain — Method(m::MetricChain)(x::AbstractArray; matrix::Bool=false)Perform a forward pass through the MetricChain.
Arguments
x::AbstractArray: The input data to be processed.matrix::Bool=false: A boolean flag indicating whether to return the result as a lower triangular matrix (iftrue) or as a tuple of diagonal and lower off-diagonal elements (iffalse). Defaults tofalse.
Returns
- If
matrixistrue, returns a lower triangular matrix constructed from the outputs of thediagandlowercomponents of the MetricChain. - If
matrixisfalse, returns aNamedTuplewith two elements:diag, the output of thediagcomponent of the MetricChain, andlower, the output of thelowercomponent of the MetricChain.
Example
m = MetricChain(...)
x = rand(Float32, 100, 10)
m(x, matrix=true) # Returns a lower triangular matrixRHVAE
AutoEncoderToolkit.RHVAEs.RHVAE — Method(rhvae::RHVAE{VAE{E,D}})(
x::AbstractArray;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
K::Int=3,
βₒ::Number=0.3f0,
∇H::Function=∇hamiltonian_TaylorDiff,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
G_inv=G_inv,
),
tempering_schedule::Function=quadratic_tempering,
latent::Bool=false,
) where where {E<:AbstractGaussianLogEncoder,D<:AbstractVariationalDecoder}Run the Riemannian Hamiltonian Variational Autoencoder (RHVAE) on the given input.
Arguments
x::AbstractArray: The input to the RHVAE. If it is a vector, it represents a single data point. IfArray,the last dimension must contain each of the data points.
Optional Keyword Arguments
K::Int=3: The number of leapfrog steps to perform in the Hamiltonian Monte Carlo (HMC) part of the RHVAE.ϵ::Union{<:Number,<:AbstractVector}=0.01f0: The step size for the leapfrog steps in the HMC part of the RHVAE. If it is a scalar, the same step size is used for all dimensions. If it is an array, each element corresponds to the step size for a specific dimension.βₒ::Number=0.3f0: The initial inverse temperature for the tempering schedule.steps::Int: The number of fixed-point iterations to perform. Default is 3.∇H::Function=∇hamiltonian_finite: The function to compute the gradient of the Hamiltonian in the HMC part of the RHVAE.∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction. Default is a NamedTuple withreconstruction_loglikelihood,position_logprior, andmomentum_logprior.G_inv::Function=G_inv: The function to compute the inverse of the Riemannian metric tensor.tempering_schedule::Function=quadratic_tempering: The function to compute the tempering schedule in the RHVAE.latent::Bool=false: Iftrue, the function returns a NamedTuple containing the outputs of the encoder and decoder, and the final state of the phase space after the leapfrog and tempering steps. Iffalse, the function only returns the output of the decoder.
Returns
If latent=true, the function returns a NamedTuple with the following fields:
encoder: The outputs of the encoder.decoder: The output of the decoder.phase_space: The final state of the phase space after the leapfrog and tempering steps.
If latent=false, the function only returns the output of the decoder.
Description
This function runs the RHVAE on the given input. It first passes the input through the encoder to obtain the mean and log standard deviation of the latent space. It then uses the reparameterization trick to sample from the latent space. After that, it performs the leapfrog and tempering steps to refine the sample from the latent space. Finally, it passes the refined sample through the decoder to obtain the output.
Notes
Ensure that the dimensions of x match the input dimensions of the RHVAE, and that the dimensions of ϵ match the dimensions of the latent space.
Loss function
AutoEncoderToolkit.RHVAEs.loss — Functionloss(
rhvae::RHVAE,
x::AbstractArray;
K::Int=3,
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
βₒ::Number=0.3f0,
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
G_inv::Function=G_inv,
tempering_schedule::Function=quadratic_tempering,
reg_function::Union{Function,Nothing}=nothing,
reg_kwargs::NamedTuple=NamedTuple(),
reg_strength::Number=1.0f0,
logp_prefactor::AbstractArray=ones(Float32, 3),
logq_prefactor::AbstractArray=ones(Float32, 3),
)Compute the loss for a Riemannian Hamiltonian Variational Autoencoder (RHVAE).
Arguments
rhvae::RHVAE: The RHVAE used to encode the input data and decode the latent space.x::AbstractArray: Input data to the RHVAE encoder. The last dimension is taken as having each of the samples in a batch.
Optional Keyword Arguments
K::Int: The number of HMC steps (default is 3).ϵ::Union{<:Number,<:AbstractVector}: The step size for the leapfrog integrator (default is 0.001).βₒ::Number: The initial inverse temperature (default is 0.3).steps::Int: The number of steps in the leapfrog integrator (default is 3).∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor (default isG_inv).tempering_schedule::Function: The tempering schedule function used in the HMC (default isquadratic_tempering).reg_function::Union{Function, Nothing}=nothing: A function that computes the regularization term based on the VAE outputs. This function must take as input the VAE outputs and the keyword arguments provided inreg_kwargs.reg_kwargs::NamedTuple=NamedTuple(): Keyword arguments to pass to the regularization function.reg_strength::Number=1.0f0: The strength of the regularization term.logp_prefactor::AbstractArray: A 3-element array to scale the log likelihood, log prior of the latent variables, and log prior of the momentum variables. Default is an array of ones.logq_prefactor::AbstractArray: A 3-element array to scale the log posterior of the initial latent variables, log prior of the initial momentum variables, and the tempering Jacobian term. Default is an array of ones.
Returns
- The computed loss.
loss(
rhvae::RHVAE,
x_in::AbstractArray,
x_out::AbstractArray;
K::Int=3,
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
βₒ::Number=0.3f0,
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
G_inv::Function=G_inv,
tempering_schedule::Function=quadratic_tempering,
reg_function::Union{Function,Nothing}=nothing,
reg_kwargs::NamedTuple=NamedTuple(),
reg_strength::Number=1.0f0,
logp_prefactor::AbstractArray=ones(Float32, 3),
logq_prefactor::AbstractArray=ones(Float32, 3),
)Compute the loss for a Riemannian Hamiltonian Variational Autoencoder (RHVAE).
Arguments
rhvae::RHVAE: The RHVAE used to encode the input data and decode the latent space.x_in::AbstractArray: Input data to the RHVAE encoder. The last dimension is taken as having each of the samples in a batch.x_out::AbstractArray: Target data to compute the reconstruction error. The last dimension is taken as having each of the samples in a batch.
Optional Keyword Arguments
K::Int: The number of HMC steps (default is 3).ϵ::Union{<:Number,<:AbstractVector}: The step size for the leapfrog integrator (default is 0.001).βₒ::Number: The initial inverse temperature (default is 0.3).steps::Int: The number of steps in the leapfrog integrator (default is 3).∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor (default isG_inv).tempering_schedule::Function: The tempering schedule function used in the HMC (default isquadratic_tempering).reg_function::Union{Function, Nothing}=nothing: A function that computes the regularization term based on the VAE outputs. This function must take as input the VAE outputs and the keyword arguments provided inreg_kwargs.reg_kwargs::NamedTuple=NamedTuple(): Keyword arguments to pass to the regularization function.reg_strength::Number=1.0f0: The strength of the regularization term.logp_prefactor::AbstractArray: A 3-element array to scale the log likelihood, log prior of the latent variables, and log prior of the momentum variables. Default is an array of ones.logq_prefactor::AbstractArray: A 3-element array to scale the log posterior of the initial latent variables, log prior of the initial momentum variables, and the tempering Jacobian term. Default is an array of ones.
Returns
- The computed loss.
Training
AutoEncoderToolkit.RHVAEs.train! — Functiontrain!(
rhvae::RHVAE,
x::AbstractArray,
opt::NamedTuple;
loss_function::Function=loss,
loss_kwargs::NamedTuple=NamedTuple(),
verbose::Bool=false,
loss_return::Bool=false,
)Customized training function to update parameters of a Riemannian Hamiltonian Variational Autoencoder given a specified loss function.
Arguments
rhvae::RHVAE: A struct containing the elements of a Riemannian Hamiltonian Variational Autoencoder.x::AbstractArray: Input data to the RHVAE encoder. The last dimension is taken as having each of the samples in a batch.opt::NamedTuple: State of the optimizer for updating parameters. Typically initialized usingFlux.Optimisers.update!.
Optional Keyword Arguments
loss_function::Function=loss: The loss function used for training. It should accept the RHVAE model, datax, and keyword arguments in that order.loss_kwargs::NamedTuple=NamedTuple(): Arguments for the loss function. These might include parameters likeK,ϵ,βₒ,steps,∇H,∇H_kwargs,tempering_schedule,reg_function,reg_kwargs,reg_strength, depending on the specific loss function in use.verbose::Bool=false: Whether to print the loss at each iteration.loss_return::Bool=false: Whether to return the loss at each iteration.
Description
Trains the RHVAE by:
- Computing the gradient of the loss w.r.t the RHVAE parameters.
- Updating the RHVAE parameters using the optimizer.
- Updating the metric parameters.
train!(
rhvae::RHVAE,
x_in::AbstractArray,
x_out::AbstractArray,
opt::NamedTuple;
loss_function::Function=loss,
loss_kwargs::NamedTuple=NamedTuple(),
verbose::Bool=false,
loss_return::Bool=false,
)Customized training function to update parameters of a Riemannian Hamiltonian Variational Autoencoder given a specified loss function.
Arguments
rhvae::RHVAE: A struct containing the elements of a Riemannian Hamiltonian Variational Autoencoder.x_in::AbstractArray: Input data to the RHVAE encoder. The last dimension is taken as having each of the samples in a batch.x_out::AbstractArray: Target data to compute the reconstruction error. The last dimension is taken as having each of the samples in a batch.opt::NamedTuple: State of the optimizer for updating parameters. Typically initialized usingFlux.Optimisers.update!.
Optional Keyword Arguments
loss_function::Function=loss: The loss function used for training. It should accept the RHVAE model, datax, and keyword arguments in that order.loss_kwargs::NamedTuple=NamedTuple(): Arguments for the loss function. These might include parameters likeK,ϵ,βₒ,steps,∇H,∇H_kwargs,tempering_schedule,reg_function,reg_kwargs,reg_strength, depending on the specific loss function in use.verbose::Bool=false: Whether to print the loss at each iteration.loss_return::Bool=false: Whether to return the loss at each iteration.
Description
Trains the RHVAE by:
- Computing the gradient of the loss w.r.t the RHVAE parameters.
- Updating the RHVAE parameters using the optimizer.
- Updating the metric parameters.
Computing the gradient of the potential energy
One of the crucial components in the training of the RHVAE is the computation of the gradient of the Hamiltonian $\nabla H$ with respect to the latent space representation. This gradient is used in the leapfrog steps of the generalized Hamiltonian dynamics. When training the RHVAE, we need to backpropagate through the leapfrog steps to update the parameters of the neural network. This requires computing a gradient of a function of the gradient of the Hamiltonian, i.e., nested gradients. Zygote.jl the main AutoDiff backend in Flux.jl famously struggle with these types of computations. Specifically, Zygote.jl does not support Zygote over Zygote differentiation (meaning differentiating a function of something previously differentiated with Zygote using Zygote), or Zygote over ForwardDiff (meaning differentiating a function of something differentiated with ForwardDiff using Zygote).
With this, we are left with a couple of options to compute the gradient of the potential energy:
- Use finite differences to approximate the gradient of the potential energy.
- Use the relatively new
TaylorDiff.jlAutoDiff backend to compute the gradient of the potential energy. This backend is composable withZygote.jl, so we can, in principle, doZygoteoverTaylorDiffdifferentiation.
The second option would be preferred, as the gradients computed with TaylorDiff are much more accurate than the ones computed with finite differences. However, there are two problems with this approach:
- The
TaylorDiffnested gradient capability stopped working withJulia ≥ 1.10, as discussed in #70. - Even for
Julia < 1.10, we could not getTaylorDiffto work onCUDAdevices. (PRs are welcome!)
With these limitations in mind, we have implemented the gradient of the potential using both finite differences and TaylorDiff. The user can choose which method to use by setting the adtype keyword argument in the ∇H_kwargs in the loss function to either :finite or :TaylorDiff. This means that for the train! function, the user can pass loss_kwargs that looks like this:
# Define the autodiff backend to use
loss_kwargs = Dict(
:∇H_kwargs => Dict(
:adtype => :finite
)
)Although verbose, the nested dictionaries help to keep everything organized. (PRs with better design ideas are welcome!)
The default both for cpu and gpu devices is :finite.
AutoEncoderToolkit.RHVAEs.∇hamiltonian_finite — Function∇hamiltonian_finite(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
G⁻¹::AbstractArray,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
fdtype::Symbol=:central,
)Compute the gradient of the Hamiltonian with respect to a given variable using a naive finite difference method.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, the inverse of the Riemannian metric tensor G⁻¹, a decoder of type AbstractVariationalDecoder, a decoder_output NamedTuple, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using a simple finite differences method. The computation is based on the log-likelihood of the decoder, the log-prior of the latent space, and G⁻¹.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = 0.5 * log((2π)ᴰ det G(z)) + 0.5 * ρᵀ G⁻¹ ρ
where D is the dimension of the latent space, and G(z) is the metric tensor at the point z.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.G⁻¹::AbstractArray: The inverse of the Riemannian metric tensor. If 3D array, each slice along the third dimension represents the inverse of the metric tensor at the corresponding column ofz.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor. If vector, each element represents the log determinant of the metric tensor at the corresponding column ofz.decoder::AbstractVariationalDecoder: The decoder instance.decoder_output::NamedTuple: The output of the decoder.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρandG⁻¹.fdtype::Symbol=:central: The type of finite difference method to use. Must be :central or :forward. Default is :central.
Returns
A vector representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
∇hamiltonian_finite(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
G_inv::Function=G_inv,
fdtype::Symbol=:central,
)Compute the gradient of the Hamiltonian with respect to a given variable using a naive finite difference method.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, an instance of RHVAE, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using a simple finite differences method. The computation is based on the log-likelihood of the decoder, the log-prior of the latent space, and the inverse of the metric tensor G at the point z.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = 0.5 * log((2π)ᴰ det G(z)) + 0.5 * ρᵀ G⁻¹ ρ
where D is the dimension of the latent space, and G(z) is the metric tensor at the point z.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.rhvae::RHVAE: An instance of the RHVAE model.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρand the inverse of the Riemannian metric tensorG⁻¹.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv. This function must take as input the pointzin the latent space and therhvaeinstance.fdtype::Symbol=:central: The type of finite difference method to use. Must be :central or :forward. Default is :central.
Returns
A vector representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
Note
The inverse of the Riemannian metric tensor G⁻¹, the log determinant of the metric tensor, and the output of the decoder are computed internally in this function. The user does not need to provide these as inputs.
AutoEncoderToolkit.RHVAEs.∇hamiltonian_TaylorDiff — Function∇hamiltonian_TaylorDiff(
x::AbstractArray,
z::AbstractVector,
ρ::AbstractVector,
G⁻¹::AbstractMatrix,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
)Compute the gradient of the Hamiltonian with respect to a given variable using the TaylorDiff.jl automatic differentiation library.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, an instance of AbstractVariationalDecoder, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using TaylorDiff.jl.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = 0.5 * log((2π)ᴰ det G(z)) + 0.5 * ρᵀ G⁻¹ ρ
where D is the dimension of the latent space, and G(z) is the metric tensor at the point z.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVector: The point in the latent space.ρ::AbstractVector: The momentum.G⁻¹::AbstractMatrix: The inverse of the Riemannian metric tensor.logdetG::Number: The logarithm of the determinant of the Riemannian metric tensor.decoder::AbstractVariationalDecoder: An instance of the decoder model.decoder_output::NamedTuple: The output of the decoder model.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρand the inverse of the Riemannian metric tensorG⁻¹.
Returns
A vector representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
Note
TaylorDiff.jl is composable with Zygote.jl. Thus, for backpropagation using this function one should use Zygote.jl.
∇hamiltonian_TaylorDiff(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
G_inv::Function=G_inv,
)Compute the gradient of the Hamiltonian with respect to a given variable using the TaylorDiff.jl automatic differentiation library.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, an instance of RHVAE, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using TaylorDiff.jl.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = 0.5 * log((2π)ᴰ det G(z)) + 0.5 * ρᵀ G⁻¹ ρ
where D is the dimension of the latent space, and G(z) is the metric tensor at the point z.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrix, each column represents a momentum vector.rhvae::RHVAE: An instance of the RHVAE model.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρand the inverse of the Riemannian metric tensorG⁻¹.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv. This function must take as input the pointzin the latent space and therhvaeinstance.
Returns
A matrix representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
AutoEncoderToolkit.RHVAEs.∇hamiltonian_ForwardDiff — Function∇hamiltonian_ForwardDiff(
x::AbstractArray,
z::AbstractVector,
ρ::AbstractVector,
G⁻¹::AbstractMatrix,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
)Compute the gradient of the Hamiltonian with respect to a given variable using the ForwardDiff.jl automatic differentiation library.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, the inverse of the Riemannian metric tensor G⁻¹, a decoder of type AbstractVariationalDecoder, a decoder_output NamedTuple, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using ForwardDiff.jl.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = 0.5 * log((2π)ᴰ det G(z)) + 0.5 * ρᵀ G⁻¹ ρ
where D is the dimension of the latent space, and G(z) is the metric tensor at the point z.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVector: The point in the latent space.ρ::AbstractVector: The momentum.G⁻¹::AbstractMatrix: The inverse of the Riemannian metric tensor.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor.decoder::AbstractVariationalDecoder: The decoder instance.decoder_output::NamedTuple: The output of the decoder.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρandG⁻¹.
Returns
A vector representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
Note
ForwardDiff.jl is not composable with Zygote.jl. Thus, for backpropagation using this function one should use ReverseDiff.jl.
∇hamiltonian_ForwardDiff(
x::AbstractArray,
z::AbstractMatrix,
ρ::AbstractMatrix,
G⁻¹::AbstractArray,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
)Compute the gradient of the Hamiltonian with respect to a given variable using the ForwardDiff.jl automatic differentiation library.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, the inverse of the Riemannian metric tensor G⁻¹, a decoder of type AbstractVariationalDecoder, a decoder_output NamedTuple, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using ForwardDiff.jl.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = 0.5 * log((2π)ᴰ det G(z)) + 0.5 * ρᵀ G⁻¹ ρ
where D is the dimension of the latent space, and G(z) is the metric tensor at the point z.
The Jacobian is computed with respect to var to compute derivatives for all columns at once. The relevant terms for each column's gradient are then extracted from the Jacobian.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractMatrix: The point in the latent space.ρ::AbstractMatrix: The momentum.G⁻¹::AbstractArray: The inverse of the Riemannian metric tensor.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor.decoder::AbstractVariationalDecoder: The decoder instance.decoder_output::NamedTuple: The output of the decoder.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρandG⁻¹.
Returns
A matrix representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
Note
ForwardDiff.jl is not composable with Zygote.jl. Thus, for backpropagation using this function one should use ReverseDiff.jl.
∇hamiltonian_ForwardDiff(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
G_inv::Function=G_inv,
)Compute the gradient of the Hamiltonian with respect to a given variable using the ForwardDiff.jl automatic differentiation library.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, an instance of RHVAE, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using ForwardDiff.jl.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = 0.5 * log((2π)ᴰ det G(z)) + 0.5 * ρᵀ G⁻¹ ρ
where D is the dimension of the latent space, and G(z) is the metric tensor at the point z.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrix, each column represents a momentum vector.rhvae::RHVAE: An instance of the RHVAE model.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρand the inverse of the Riemannian metric tensorG⁻¹.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv. This function must take as input the pointzin the latent space and therhvaeinstance.
Returns
A matrix representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
Note
ForwardDiff.jl is not composable with Zygote.jl. Thus, for backpropagation using this function one should use ReverseDiff.jl.
Other Functions
AutoEncoderToolkit.RHVAEs.update_metric — Functionupdate_metric(
rhvae::RHVAE{<:VAE{<:AbstractGaussianEncoder,<:AbstractVariationalDecoder}}
)Compute the centroids_latent and M field of a RHVAE instance without modifying the instance. This method is used when needing to backpropagate through the RHVAE during training.
Arguments
rhvae::RHVAE{<:VAE{<:AbstractGaussianEncoder,<:AbstractVariationalDecoder}}: TheRHVAEinstance to be updated.
Returns
- NamedTuple with the following fields:
centroids_latent::Matrix: A matrix where each column represents a centroid cᵢ in the inverse metric computation.L::Array{<:Number, 3}: A 3D array where each slice represents a L_ψᵢ matrix.M::Array{<:Number, 3}: A 3D array where each slice represents a Lψᵢ Lψᵢᵀ.
AutoEncoderToolkit.RHVAEs.update_metric! — Functionupdate_metric!(
rhvae::RHVAE{<:VAE{<:AbstractGaussianEncoder,<:AbstractVariationalDecoder}},
params::NamedTuple
)Update the centroids_latent and M fields of a RHVAE instance in place.
This function takes a RHVAE instance and a named tuple params containing the new values for centroids_latent and M. It updates the centroids_latent, L, and M fields of the RHVAE instance with the provided values.
Arguments
rhvae::RHVAE{<:VAE{<:AbstractGaussianEncoder,<:AbstractVariationalDecoder}}: TheRHVAEinstance to update.params::NamedTuple: A named tuple containing the new values forcentroids_latentandM. Must have the keys:centroids_latent,:L, and:M.
Returns
Nothing. The RHVAE instance is updated in place.
update_metric!(
rhvae::RHVAE{
<:VAE{<:AbstractGaussianEncoder,<:AbstractVariationalDecoder}
}
)Update the centroids_latent, and M fields of a RHVAE instance in place.
This function takes a RHVAE instance as input and modifies its centroids_latent and M fields. The centroids_latent field is updated by running the centroids_data through the encoder of the underlying VAE and extracting the mean (µ) of the resulting Gaussian distribution. The M field is updated by running each column of the centroids_data through the metric_chain and concatenating the results along the third dimension, then each slice is updated by multiplying each slice of L by its transpose and concating the results along the third dimension.
Arguments
rhvae::RHVAE{<:VAE{<:AbstractGaussianEncoder,<:AbstractVariationalDecoder}}: TheRHVAEinstance to be updated.
Notes
This function modifies the RHVAE instance in place, so it does not return anything. The changes are made directly to the centroids_latent, L, and M fields of the input RHVAE instance.
AutoEncoderToolkit.RHVAEs.G_inv — FunctionG_inv(
z::AbstractVecOrMat,
centroids_latent::AbstractMatrix,
M::AbstractArray{<:Number,3},
T::Number,
λ::Number,
)Compute the inverse of the metric tensor G for a given point in the latent space.
This function takes a point z in the latent space, the centroids_latent of the RHVAE instance, a 3D array M representing the metric tensor, a temperature T, and a regularization factor λ, and computes the inverse of the metric tensor G at that point. The computation is based on the centroids and the temperature, as well as a regularization term. The inverse metric is computed as follows:
G⁻¹(z) = ∑ᵢ₌₁ⁿ Lψᵢ Lψᵢᵀ exp(-‖z - cᵢ‖₂² / T²) + λIₗ,
where Lψᵢ is computed by the MetricChain, T is the temperature, λ is a regularization factor, and each column of `centroidslatent` are the cᵢ.
Arguments
z::AbstractVecOrMat: The point in the latent space. If a matrix, each column represents a point in the latent space.centroids_latent::AbstractMatrix: The centroids in the latent space.M::AbstractArray{<:Number,3}: The 3D array containing the symmetric matrices used to compute the inverse metric tensor.T::N: The temperature.λ::N: The regularization factor.
Returns
A matrix or 3D array representing the inverse of the metric tensor G at the point z. If a 3D array, each slice represents the inverse metric tensor at a different point in the latent space.
Notes
The computation involves the squared Euclidean distance between z and each centroid, the exponential of the negative of these distances divided by the square of the temperature, and a regularization term proportional to the identity matrix. The result is a matrix of the same size as the latent space.
GPU support
This function supports CPU and GPU arrays.
G_inv(
z::AbstractVecOrMat,
metric_param::Union{RHVAE,NamedTuple},
)Compute the inverse of the metric tensor G for a given point in the latent space.
This function takes a RHVAE instance and a point z in the latent space, and computes the inverse of the metric tensor G at that point. The computation is based on the centroids and the temperature of the RHVAE instance, as well as a regularization term. The inverse metric is computed as follows:
G⁻¹(z) = ∑ᵢ₌₁ⁿ Lψᵢ Lψᵢᵀ exp(-‖z - cᵢ‖₂² / T²) + λIₗ,
where Lψᵢ is computed by the MetricChain, T is the temperature, λ is a regularization factor, and each column of `centroidslatent` are the cᵢ.
Arguments
z::AbstractVecOrMat: The point in the latent space. If a matrix, each column represents a point in the latent space.metric_param::Union{RHVAE,NamedTuple}: Either anRHVAEinstance or a named tuple containing the fieldscentroids_latent,M,T, andλ.
Returns
A matrix representing the inverse of the metric tensor G at the point z.
Notes
The computation involves the squared Euclidean distance between z and each centroid of the RHVAE instance, the exponential of the negative of these distances divided by the square of the temperature, and a regularization term proportional to the identity matrix. The result is a matrix of the same size as the latent space.
AutoEncoderToolkit.RHVAEs.metric_tensor — Functionmetric_tensor(
z::AbstractVecOrMat,
metric_param::Union{RHVAE,NamedTuple},
)Compute the metric tensor G for a given point in the latent space. This function is a wrapper that determines the type of the input z and calls the appropriate specialized function _metric_tensor to perform the actual computation.
This function takes a RHVAE instance or a named tuple containing the fields centroids_latent, M, T, and λ, and a point z in the latent space, and computes the metric tensor G at that point. The computation is based on the inverse of the metric tensor G, which is computed by the G_inv function.
Arguments
z::AbstractVecOrMat: The point in the latent space. If a matrix, each column represents a point in the latent space.metric_param::Union{RHVAE,NamedTuple}: Either anRHVAEinstance or a named tuple containing the fieldscentroids_latent,M,T, andλ.
Returns
A matrix representing the metric tensor G at the point z.
Notes
The computation involves the inverse of the metric tensor G at the point z. The result is a matrix of the same size as the latent space.
GPU Support
This function supports CPU and GPU arrays.
AutoEncoderToolkit.RHVAEs.riemannian_logprior — Functionriemannian_logprior(
ρ::AbstractVector,
G⁻¹::AbstractMatrix,
logdetG::Number;
)CPU AbstractVector version of the riemannian_logprior function.
riemannian_logprior(
ρ::AbstractVector,
G⁻¹::AbstractMatrix,
logdetG::Number,
)CPU AbstractMatrix version of the riemannian_logprior function.
AutoEncoderToolkit.RHVAEs.hamiltonian — Functionhamiltonian(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
G⁻¹::AbstractArray,
logdetG::Union{<:Number,<:AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple;
decoder_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
)Compute the Hamiltonian for a given point in the latent space and a given momentum.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, the inverse of the Riemannian metric tensor G⁻¹, a decoder of type AbstractVariationalDecoder, and a decoder_output NamedTuple, and computes the Hamiltonian. The computation is based on the log-likelihood of the decoder, the log-prior of the latent space, and the inverse of the metric tensor G at the point z.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = -log p(ρ),
where p(ρ) is the log-prior of the momentum.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported, but the last dimension of the array should be of size 1.z::AbstractVecOrMat: The point in the latent space.ρ::AbstractVecOrMat: The momentum.G⁻¹::AbstractArray: The inverse of the Riemannian metric tensor. This should be computed elsewhere and should correspond to the givenzvalue.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor. This should be computed elsewhere and should correspond to the givenzvalue.decoder::AbstractVariationalDecoder: The decoder instance. This is not used in the computation of the Hamiltonian, but is passed to thedecoder_loglikelihoodfunction to know which method to use.decoder_output::NamedTuple: The output of the decoder.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρand the inverse of the Riemannian metric tensorG⁻¹.
Returns
A scalar representing the Hamiltonian at the point z with the momentum ρ.
Note
The inverse of the Riemannian metric tensor G⁻¹ is assumed to be computed elsewhere. The user must ensure that the provided G⁻¹ corresponds to the given z value.
hamiltonian(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
G_inv::Function=G_inv,
)Compute the Hamiltonian for a given point in the latent space and a given momentum.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, and an instance of RHVAE. It computes the inverse of the Riemannian metric tensor G⁻¹ and the output of the decoder internally, and then computes the Hamiltonian. The computation is based on the log-likelihood of the decoder, the log-prior of the latent space, and the inverse of the metric tensor G at the point z.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = -log p(ρ),
where p(ρ) is the log-prior of the momentum.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported, but the last dimension of the array should be of size 1.z::AbstractVector: The point in the latent space.ρ::AbstractVector: The momentum.rhvae::RHVAE: An instance of the RHVAE model.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρand the inverse of the Riemannian metric tensorG⁻¹.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv. This function must take as input the pointzin the latent space and therhvaeinstance.
Returns
A scalar representing the Hamiltonian at the point z with the momentum ρ.
Note
The inverse of the Riemannian metric tensor G⁻¹, the log determinant of the metric tensor, and the output of the decoder are computed internally in this function. The user does not need to provide these as inputs.
AutoEncoderToolkit.RHVAEs.∇hamiltonian — Function∇hamiltonian(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
G⁻¹::AbstractArray,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
adtype::Symbol=:TaylorDiff,
adkwargs::NamedTuple=NamedTuple(),
)Compute the gradient of the Hamiltonian with respect to a given variable using a specified automatic differentiation method.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, the inverse of the Riemannian metric tensor G⁻¹, a decoder of type AbstractVariationalDecoder, a decoder_output NamedTuple, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using the specified automatic differentiation method. The computation is based on the log-likelihood of the decoder, the log-prior of the latent space, and G⁻¹.
The Hamiltonian is computed as follows:
Hₓ(z, ρ) = Uₓ(z) + κ(ρ),
where Uₓ(z) is the potential energy, and κ(ρ) is the kinetic energy. The potential energy is defined as follows:
Uₓ(z) = -log p(x|z) - log p(z),
where p(x|z) is the log-likelihood of the decoder and p(z) is the log-prior in latent space. The kinetic energy is defined as follows:
κ(ρ) = 0.5 * log((2π)ᴰ det G(z)) + 0.5 * ρᵀ G⁻¹ ρ
where D is the dimension of the latent space, and G(z) is the metric tensor at the point z.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrix, each column represents a momentum vector.G⁻¹::AbstractArray: The inverse of the Riemannian metric tensor. If 3D array, each slice along the third dimension represents the inverse of the metric tensor at the corresponding column ofz.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor. If vector, each element represents the log determinant of the metric tensor at the corresponding column ofz.decoder::AbstractVariationalDecoder: The decoder instance.decoder_output::NamedTuple: The output of the decoder.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρandG⁻¹.adtype::Symbol=:finite: The type of automatic differentiation method to use. Must be:finite,:ForwardDiff, or:TaylorDiff. Default is:finite`.adkwargs::NamedTuple=NamedTuple(): Additional keyword arguments to pass to the automatic differentiation method.
Returns
A vector representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
∇hamiltonian(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE,
var::Symbol;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
G_inv::Function=G_inv,
adtype::Symbol=:TaylorDiff,
adkwargs::NamedTuple=NamedTuple(),
)Compute the gradient of the Hamiltonian with respect to a given variable using a specified automatic differentiation method.
This function takes a point x in the data space, a point z in the latent space, a momentum ρ, an instance of RHVAE, and a variable var (:z or :ρ), and computes the gradient of the Hamiltonian with respect to var using the specified automatic differentiation method. The computation is based on the log-likelihood of the decoder, the log-prior of the latent space, and G_inv.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrix, each column represents a momentum vector.rhvae::RHVAE: An instance of the RHVAE model.var::Symbol: The variable with respect to which the gradient is computed. Must be :z or :ρ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log-likelihood of the decoder reconstruction. Default isdecoder_loglikelihood. This function must take as input the decoder, the pointxin the data space, and thedecoder_output.position_logprior::Function: The function to compute the log-prior of the latent space position. Default isspherical_logprior. This function must take as input the pointzin the latent space.momentum_logprior::Function: The function to compute the log-prior of the momentum. Default isriemannian_logprior. This function must take as input the momentumρandG_inv.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv.adtype::Symbol=:finite: The type of automatic differentiation method to use. Must be:finite,:ForwardDiff, or:TaylorDiff. Default is:finite`.adkwargs::NamedTuple=NamedTuple(): Additional keyword arguments to pass to the automatic differentiation method.
Returns
A vector representing the gradient of the Hamiltonian at the point (z, ρ) with respect to variable var.
AutoEncoderToolkit.RHVAEs._leapfrog_first_step — Function_leapfrog_first_step(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
G⁻¹::AbstractArray,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
)Perform the first step of the generalized leapfrog integrator for Hamiltonian dynamics, defined as
ρ(t + ϵ/2) = ρ(t) - 0.5 * ϵ * ∇z_H(z(t), ρ(t + ϵ/2)).
This function is part of the generalized leapfrog integrator used in Hamiltonian dynamics. Unlike the standard leapfrog integrator, the generalized leapfrog integrator is implicit, which means it requires the use of fixed-point iterations to be solved.
The function takes a point x in the data space, a point z in the latent space, a momentum ρ, the inverse of the Riemannian metric tensor G⁻¹, a decoder of type AbstractVariationalDecoder, the output of the decoder decoder_output, a step size ϵ, and optionally the number of fixed-point iterations to perform (steps), a function to compute the gradient of the Hamiltonian (∇H), and a set of keyword arguments for ∇H (∇H_kwargs).
The function performs the following update for steps times:
ρ̃ = ρ̃ - 0.5 * ϵ * ∇hamiltonian(x, z, ρ̃, G⁻¹, decoder, decoderoutput, :z; ∇Hkwargs...)
where ∇H is the gradient of the Hamiltonian with respect to the position variables z. The result is returned as ρ̃.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.G⁻¹::AbstractArray: The inverse of the Riemannian metric tensor. If 3D array, each slice along the third dimension represents the inverse of the metric tensor at the corresponding column ofz.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor. If vector, each element represents the log determinant of the metric tensor at the corresponding column ofz.decoder::AbstractVariationalDecoder: The decoder instance.decoder_output::NamedTuple: The output of the decoder.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}=0.01f0: The leapfrog step size. Default is 0.01f0.steps::Int=3: The number of fixed-point iterations to perform. Default is 3.∇H_kwargs::NamedTuple: The keyword arguments for∇hamiltonian. Default is a tuple withreconstruction_loglikelihood,position_logprior,momentum_logprior, andG_inv.
Returns
A vector representing the updated momentum after performing the first step of the generalized leapfrog integrator.
_leapfrog_first_step(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
G_inv::Function=G_inv,
)Perform the first step of the generalized leapfrog integrator for Hamiltonian dynamics, defined as
ρ(t + ϵ/2) = ρ(t) - 0.5 * ϵ * ∇z_H(z(t), ρ(t + ϵ/2)).
This function is part of the generalized leapfrog integrator used in Hamiltonian dynamics. Unlike the standard leapfrog integrator, the generalized leapfrog integrator is implicit, which means it requires the use of fixed-point iterations to be solved.
The function takes a RHVAE instance, a point x in the data space, a point z in the latent space, a momentum ρ, a step size ϵ, and optionally the number of fixed-point iterations to perform (steps), a function to compute the gradient of the Hamiltonian (∇H), and a set of keyword arguments for ∇H (∇H_kwargs).
The function performs the following update for steps times:
ρ̃ = ρ̃ - 0.5 * ϵ * ∇hamiltonian(rhvae, x, z, ρ̃, :z; ∇H_kwargs...)
where ∇H is the gradient of the Hamiltonian with respect to the position variables z. The result is returned as ρ̃.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.rhvae::RHVAE: TheRHVAEinstance.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}=0.01f0: The leapfrog step size. Default is 0.01f0.steps::Int=3: The number of fixed-point iterations to perform. Default is 3.∇H_kwargs::NamedTuple: The keyword arguments for∇hamiltonian. Default is a tuple withreconstruction_loglikelihood,position_logprior, andmomentum_logprior.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv.
Returns
A vector representing the updated momentum after performing the first step of the generalized leapfrog integrator.
AutoEncoderToolkit.RHVAEs._leapfrog_second_step — Function_leapfrog_second_step(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
G⁻¹::AbstractArray,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
)Perform the second step of the generalized leapfrog integrator for Hamiltonian dynamics, defined as
z(t + ϵ) = z(t) + 0.5 * ϵ * [∇ρH(z(t), ρ(t+ϵ/2)) + ∇ρH(z(t + ϵ), ρ(t+ϵ/2))].
This function is part of the generalized leapfrog integrator used in Hamiltonian dynamics. Unlike the standard leapfrog integrator, the generalized leapfrog integrator is implicit, which means it requires the use of fixed-point iterations to be solved.
The function takes a point x in the data space, a point z in the latent space, a momentum ρ, the inverse of the Riemannian metric tensor G⁻¹, a decoder of type AbstractVariationalDecoder, the output of the decoder decoder_output, a step size ϵ, and optionally the number of fixed-point iterations to perform (steps), a function to compute the gradient of the Hamiltonian (∇H), and a set of keyword arguments for ∇H (∇H_kwargs).
The function performs the following update for steps times:
z̄ = z̄ + 0.5 * ϵ * ( ∇hamiltonian(x, z̄, ρ, G⁻¹, decoder, decoderoutput, :ρ; ∇Hkwargs...) + ∇hamiltonian(x, z, ρ, G⁻¹, decoder, decoderoutput, :ρ; ∇Hkwargs...) )
where ∇H is the gradient of the Hamiltonian with respect to the momentum variables ρ. The result is returned as z̄.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.G⁻¹::AbstractArray: The inverse of the Riemannian metric tensor. If 3D array, each slice along the third dimension represents the inverse of the metric tensor at the corresponding column ofz.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor. If vector, each element represents the log determinant of the metric tensor at the corresponding column ofz.decoder::AbstractVariationalDecoder: The decoder instance.decoder_output::NamedTuple: The output of the decoder.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}=0.01f0: The step size. Default is 0.01.steps::Int=3: The number of fixed-point iterations to perform. Default is 3.∇H_kwargs::NamedTuple: The keyword arguments for∇hamiltonian. Default is a tuple withreconstruction_loglikelihood,position_logprior,momentum_logprior.
Returns
A vector representing the updated position after performing the second step of the generalized leapfrog integrator.
_leapfrog_second_step(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
G_inv::Function=G_inv,
)Perform the second step of the generalized leapfrog integrator for Hamiltonian dynamics, defined as
z(t + ϵ) = z(t) + 0.5 * ϵ * [∇ρH(z(t), ρ(t+ϵ/2)) + ∇ρH(z(t + ϵ), ρ(t+ϵ/2))].
This function is part of the generalized leapfrog integrator used in Hamiltonian dynamics. Unlike the standard leapfrog integrator, the generalized leapfrog integrator is implicit, which means it requires the use of fixed-point iterations to be solved.
The function takes a RHVAE instance, a point x in the data space, a point z in the latent space, a momentum ρ, a step size ϵ, and optionally the number of fixed-point iterations to perform (steps), a function to compute the gradient of the Hamiltonian (∇H), and a set of keyword arguments for ∇H (∇H_kwargs).
The function performs the following update for steps times:
z̄ = z̄ + 0.5 * ϵ * ( ∇hamiltonian(rhvae, x, z̄, ρ, :ρ; ∇Hkwargs...) + ∇hamiltonian(rhvae, x, z, ρ, :ρ; ∇Hkwargs...) )
where ∇H is the gradient of the Hamiltonian with respect to the momentum variables ρ. The result is returned as z̄.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.rhvae::RHVAE: TheRHVAEinstance.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}=0.01f0: The leapfrog step size. Default is 0.01f0.steps::Int=3: The number of fixed-point iterations to perform. Default is 3. Typically, 3 iterations are sufficient.∇H_kwargs::NamedTuple: The keyword arguments for∇hamiltonian. Default is a tuple withreconstruction_loglikelihood,position_logprior, andmomentum_logprior.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv.
Returns
A vector representing the updated position after performing the second step of the generalized leapfrog integrator.
AutoEncoderToolkit.RHVAEs._leapfrog_third_step — Function_leapfrog_third_step(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
G⁻¹::AbstractArray,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
)Perform the third step of the generalized leapfrog integrator for Hamiltonian dynamics, defined as
ρ(t + ϵ) = ρ(t + ϵ/2) - 0.5 * ϵ * ∇z_H(z(t + ϵ), ρ(t + ϵ/2)).
This function is part of the generalized leapfrog integrator used in Hamiltonian dynamics. Unlike the standard leapfrog integrator, the generalized leapfrog integrator is implicit, which means it requires the use of fixed-point iterations to be solved.
The function takes a point x in the data space, a point z in the latent space, a momentum ρ, the inverse of the Riemannian metric tensor G⁻¹, a decoder of type AbstractVariationalDecoder, the output of the decoder decoder_output, a step size ϵ, a function to compute the gradient of the Hamiltonian (∇H), and a set of keyword arguments for ∇H (∇H_kwargs).
The function performs the following update:
ρ̃ = ρ - 0.5 * ϵ * ∇hamiltonian( x, z, ρ, G⁻¹, decoder, decoderoutput, :z; ∇Hkwargs... )
where ∇H is the gradient of the Hamiltonian with respect to the position variables z. The result is returned as ρ̃.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.G⁻¹::AbstractArray: The inverse of the Riemannian metric tensor. If 3D array, each slice along the third dimension represents the inverse of the metric tensor at the corresponding column ofz.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor. If vector, each element represents the log determinant of the metric tensor at the corresponding column ofz.decoder::AbstractVariationalDecoder: The decoder instance.decoder_output::NamedTuple: The output of the decoder.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}=0.01f0: The step size. Default is 0.01f0.∇H_kwargs::NamedTuple: The keyword arguments for∇hamiltonian. Default is a tuple withreconstruction_loglikelihood,position_logprior,momentum_logprior.
Returns
A vector representing the updated momentum after performing the third step of the generalized leapfrog integrator.
_leapfrog_third_step(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
G_inv::Function=G_inv,
)Perform the third step of the generalized leapfrog integrator for Hamiltonian dynamics, defined as
ρ(t + ϵ) = ρ(t + ϵ/2) - 0.5 * ϵ * ∇z_H(z(t + ϵ), ρ(t + ϵ/2)).
This function is part of the generalized leapfrog integrator used in Hamiltonian dynamics. Unlike the standard leapfrog integrator, the generalized leapfrog integrator is implicit, which means it requires the use of fixed-point iterations to be solved.
The function takes a RHVAE instance, a point x in the data space, a point z in the latent space, a momentum ρ, a step size ϵ, the number of fixed-point iterations to perform (steps), a function to compute the gradient of the Hamiltonian (∇H), and a set of keyword arguments for ∇H (∇H_kwargs).
The function performs the following update:
ρ̃ = ρ - 0.5 * ϵ * ∇hamiltonian(rhvae, x, z, ρ, :z; ∇H_kwargs...)
where ∇H is the gradient of the Hamiltonian with respect to the position variables z. The result is returned as ρ̃.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.rhvae::RHVAE: TheRHVAEinstance.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}: The leapfrog step size. Default is 0.01f0.steps::Int=3: The number of fixed-point iterations to perform. Default is 3.∇H_kwargs::NamedTuple: The keyword arguments for∇hamiltonian. Default is a tuple withreconstruction_loglikelihood,position_logprior, andmomentum_logprior.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv.
Returns
A vector representing the updated momentum after performing the third step of the generalized leapfrog integrator.
AutoEncoderToolkit.RHVAEs.general_leapfrog_step — Functiongeneral_leapfrog_step(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
G⁻¹::AbstractArray,
logdetG::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple,
metric_param::NamedTuple;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
G_inv::Function=G_inv,
)Perform a full step of the generalized leapfrog integrator for Hamiltonian dynamics.
The leapfrog integrator is a numerical integration scheme used to simulate Hamiltonian dynamics. It consists of three steps:
Half update of the momentum variable:
ρ(t + ϵ/2) = ρ(t) - 0.5 * ϵ * ∇z_H(z(t), ρ(t + ϵ/2)).
Full update of the position variable:
z(t + ϵ) = z(t) + 0.5 * ϵ * [∇ρH(z(t), ρ(t+ϵ/2)) + ∇ρH(z(t + ϵ), ρ(t+ϵ/2))].
Half update of the momentum variable:
ρ(t + ϵ) = ρ(t + ϵ/2) - 0.5 * ϵ * ∇z_H(z(t + ϵ), ρ(t + ϵ/2)).
This function performs these three steps in sequence, using the _leapfrog_first_step, _leapfrog_second_step and _leapfrog_third_step helper functions.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.G⁻¹::AbstractArray: The inverse of the Riemannian metric tensor. If 3D array, each slice along the third dimension represents the inverse of the metric tensor at the corresponding column ofz.logdetG::Union{<:Number,AbstractVector}: The log determinant of the Riemannian metric tensor. If vector, each element represents the log determinant of the metric tensor at the corresponding column ofz.decoder::AbstractVariationalDecoder: The decoder instance.decoder_output::NamedTuple: The output of the decoder.metric_param::NamedTuple: The parameters for the metric tensor.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}=0.01f0: The step size. Default is 0.01.steps::Int=3: The number of fixed-point iterations to perform. Default is 3. Typically, 3 iterations are sufficient.∇H_kwargs::NamedTuple: The keyword arguments for∇hamiltonian. Default is a tuple withdecoder_loglikelihood,position_logprior,momentum_logprior, andG_inv.G_inv::Function=G_inv: The function to compute the inverse of the Riemannian metric tensor.
Returns
A tuple (z̄, ρ̄, Ḡ⁻¹, logdetḠ, decoder_update) representing the updated position, momentum, the inverse of the updated Riemannian metric tensor, the log of the determinant of the metric tensor and the updated decoder outputs after performing the full leapfrog step.
general_leapfrog_step(
x::AbstractArray,
z::AbstractVecOrMat,
ρ::AbstractVecOrMat,
rhvae::RHVAE;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
G_inv=G_inv,
),
)Perform a full step of the generalized leapfrog integrator for Hamiltonian dynamics.
The leapfrog integrator is a numerical integration scheme used to simulate Hamiltonian dynamics. It consists of three steps:
Half update of the momentum variable: ρ(t + ϵ/2) = ρ(t) - 0.5 * ϵ * ∇z_H(z(t), ρ(t + ϵ/2)).
Full update of the position variable: z(t + ϵ) = z(t) + 0.5 * ϵ * [∇ρ_H(z(t),
ρ(t+ϵ/2)) + ∇ρ_H(z(t + ϵ), ρ(t+ϵ/2))].
- Half update of the momentum variable: ρ(t + ϵ) = ρ(t + ϵ/2) - 0.5 * ϵ * ∇z_H(z(t + ϵ), ρ(t + ϵ/2)).
This function performs these three steps in sequence, using the _leapfrog_first_step and _leapfrog_second_step helper functions.
Arguments
x::AbstractArray: The point in the data space. This does not necessarily need to be a vector. Array inputs are supported. The last dimension is assumed to have each of the data points.z::AbstractVecOrMat: The point in the latent space. If matrix, each column represents a point in the latent space.ρ::AbstractVecOrMat: The momentum. If matrux, each column represents a momentum vector.rhvae::RHVAE: TheRHVAEinstance.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}=0.01f0: The leapfrog step size. Default is 0.01f0.steps::Int=3: The number of fixed-point iterations to perform. Default is 3. Typically, 3 iterations are sufficient.∇H_kwargs::NamedTuple: The keyword arguments for∇hamiltonian. Default is a tuple withdecoder_loglikelihood,position_logprior, andmomentum_logpriorG_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Default isG_inv.A tuple
(z̄, ρ̄, Ḡ⁻¹, logdetḠ, decoder_update)representing the updated position, momentum, the inverse of the updated Riemannian metric tensor, the log of the determinant of the metric tensor, and the updated decoder outputs after performing the full leapfrog step.
AutoEncoderToolkit.RHVAEs.general_leapfrog_tempering_step — Functiongeneral_leapfrog_tempering_step(
x::AbstractArray,
zₒ::AbstractVecOrMat,
Gₒ⁻¹::AbstractArray,
logdetGₒ::Union{<:Number,AbstractVector},
decoder::AbstractVariationalDecoder,
decoder_output::NamedTuple,
metric_param::NamedTuple;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
K::Int=3,
βₒ::Number=0.3f0,
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
G_inv=G_inv,
),
tempering_schedule::Function=quadratic_tempering,
)Combines the leapfrog and tempering steps into a single function for the Riemannian Hamiltonian Variational Autoencoder (RHVAE).
Arguments
x::AbstractArray: The data to be processed. IfArray, the last dimension must be of size 1.zₒ::AbstractVector: The initial latent variable.Gₒ⁻¹::AbstractArray: The initial inverse of the Riemannian metric tensor.logdetGₒ::Union{<:Number,AbstractVector}: The log determinant of the initial Riemannian metric tensor. If vector, each element represents the log determinant of the metric tensor at the corresponding column ofzₒ.decoder::AbstractVariationalDecoder: The decoder of the RHVAE model.decoder_output::NamedTuple: The output of the decoder.metric_param::NamedTuple: The parameters of the metric tensor.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}: The step size for the leapfrog steps in the HMC algorithm. This can be a scalar or an array. Default is 0.01f0.K::Int: The number of leapfrog steps to perform in the Hamiltonian Monte Carlo (HMC) algorithm. Default is 3.βₒ::Number: The initial inverse temperature for the tempering schedule. Default is 0.3f0.steps::Int: The number of fixed-point iterations to perform. Default is 3.∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction. Default is a NamedTuple withreconstruction_loglikelihood,position_logprior, andmomentum_logprior.tempering_schedule::Function: The function to compute the inverse temperature at each step in the HMC algorithm. Defaults toquadratic_tempering. This function must take three arguments: First,βₒ, an initial inverse temperature, second,k, the current step in the tempering schedule, and third,K, the total number of steps in the tempering schedule.
Returns
- A
NamedTuplewith the following keys:z_init: The initial latent variable.ρ_init: The initial momentum variable.Ginv_init: The initial inverse of the Riemannian metric tensor.logdetG_init: The initial log determinant of the Riemannian metric tensor.z_final: The final latent variable afterKleapfrog steps.ρ_final: The final momentum variable afterKleapfrog steps.Ginv_final: The final inverse of the Riemannian metric tensor afterKleapfrog steps.logdetG_final: The final log determinant of the Riemannian metric tensor afterKleapfrog steps.
- The decoder output at the final latent variable is also returned. Note: This is not in the same named tuple as the other outputs, but as a separate output.
Description
The function first samples a random momentum variable γₒ from a standard normal distribution and scales it by the inverse square root of the initial inverse temperature βₒ to obtain the initial momentum variable ρₒ. Then, it performs K leapfrog steps, each followed by a tempering step, to generate a new sample from the latent space.
Note
Ensure the input data x and the initial latent variable zₒ match the expected input dimensionality for the RHVAE model.
general_leapfrog_tempering_step(
x::AbstractArray,
zₒ::AbstractVecOrMat,
rhvae::RHVAE;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
K::Int=3,
βₒ::Number=0.3f0,
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
),
G_inv::Function=G_inv,
tempering_schedule::Function=quadratic_tempering,
)Combines the leapfrog and tempering steps into a single function for the Riemannian Hamiltonian Variational Autoencoder (RHVAE).
Arguments
x::AbstractArray: The data to be processed. IfArray, the last dimension must be of size 1.zₒ::AbstractVecOrMat: The initial latent variable.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}: The step size for the leapfrog steps in the HMC algorithm. This can be a scalar or an array. Default is 0.01f0.K::Int: The number of leapfrog steps to perform in the Hamiltonian Monte Carlo (HMC) algorithm. Default is 3.βₒ::Number: The initial inverse temperature for the tempering schedule. Default is 0.3f0.steps::Int: The number of fixed-point iterations to perform. Default is 3.∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction. Default is a NamedTuple withreconstruction_loglikelihood,position_logprior, andmomentum_logprior.tempering_schedule::Function: The function to compute the inverse temperature at each step in the HMC algorithm. Defaults toquadratic_tempering. This function must take three arguments: First,βₒ, an initial inverse temperature, second,k, the current step in the tempering schedule, and third,K, the total number of steps in the tempering schedule.
Returns
- A
NamedTuplewith the following keys:z_init: The initial latent variable.ρ_init: The initial momentum variable.Ginv_init: The initial inverse of the Riemannian metric tensor.z_final: The final latent variable afterKleapfrog steps.ρ_final: The final momentum variable afterKleapfrog steps.Ginv_final: The final inverse of the Riemannian metric tensor afterKleapfrog steps.
- The decoder output at the final latent variable is also returned. Note: This is not in the same named tuple as the other outputs, but as a separate output.
Description
The function first samples a random momentum variable γₒ from a standard normal distribution and scales it by the inverse square root of the initial inverse temperature βₒ to obtain the initial momentum variable ρₒ. Then, it performs K leapfrog steps, each followed by a tempering step, to generate a new sample from the latent space.
Note
Ensure the input data x and the initial latent variable zₒ match the expected input dimensionality for the RHVAE model.
AutoEncoderToolkit.RHVAEs._log_p̄ — Function_log_p̄(
x::AbstractArray,
rhvae::RHVAE{VAE{E,D}},
rhvae_outputs::NamedTuple;
reconstruction_loglikelihood::Function=decoder_loglikelihood,
position_logprior::Function=spherical_logprior,
momentum_logprior::Function=riemannian_logprior,
prefactor::AbstractArray=ones(Float32, 3),
)This is an internal function used in riemannian_hamiltonian_elbo to compute the numerator of the unbiased estimator of the marginal likelihood. The function computes the sum of the log likelihood of the data given the latent variables, the log prior of the latent variables, and the log prior of the momentum variables.
log p̄ = log p(x | zₖ) + log p(zₖ) + log p(ρₖ(zₖ))Arguments
x::AbstractArray: The input data. IfArray, the last dimension must contain each of the data points.rhvae::RHVAE{<:VAE{<:AbstractGaussianEncoder,<:AbstractGaussianLogDecoder}}: The Riemannian Hamiltonian Variational Autoencoder (RHVAE) model.rhvae_outputs::NamedTuple: The outputs of the RHVAE, including the final latent variableszₖand the final momentum variablesρₖ.
Optional Keyword Arguments
reconstruction_loglikelihood::Function: The function to compute the log likelihood of the data given the latent variables. Default isdecoder_loglikelihood.position_logprior::Function: The function to compute the log prior of the latent variables. Default isspherical_logprior.momentum_logprior::Function: The function to compute the log prior of the momentum variables. Default isriemannian_logprior.prefactor::AbstractArray: A 3-element array to scale the log likelihood, log prior of the latent variables, and log prior of the momentum variables. Default is an array of ones.
Returns
log_p̄::AbstractVector: The first term of the log of the unbiased estimator of the marginal likelihood for each data point.
Note
This is an internal function and should not be called directly. It is used as part of the riemannian_hamiltonian_elbo function.
AutoEncoderToolkit.RHVAEs._log_q̄ — Function_log_q̄(
rhvae::RHVAE,
rhvae_outputs::NamedTuple,
βₒ::Number;
momentum_logprior::Function=riemannian_logprior,
prefactor::AbstractArray=ones(Float32, 3),
)This is an internal function used in riemannian_hamiltonian_elbo to compute the second term of the unbiased estimator of the marginal likelihood. The function computes the sum of the log posterior of the initial latent variables and the log prior of the initial momentum variables, minus a term that depends on the dimensionality of the latent space and the initial temperature.
log q̄ = log q(zₒ) + log p(ρₒ) - d/2 log(βₒ)Arguments
rhvae::RHVAE: The Riemannian Hamiltonian Variational Autoencoder (RHVAE) model.rhvae_outputs::NamedTuple: The outputs of the RHVAE, including the initial latent variableszₒand the initial momentum variablesρₒ.βₒ::Number: The initial temperature for the tempering steps.
Optional Keyword Arguments
momentum_logprior::Function: The function to compute the log prior of the momentum variables. Default isriemannian_logprior.prefactor::AbstractArray: A 3-element array to scale the log posterior of the initial latent variables, log prior of the initial momentum variables, and the tempering Jacobian term. Default is an array of ones.
Returns
log_q̄::Vector: The second term of the log of the unbiased estimator of the marginal likelihood for each data point.
Note
This is an internal function and should not be called directly. It is used as part of the riemannian_hamiltonian_elbo function.
AutoEncoderToolkit.RHVAEs.riemannian_hamiltonian_elbo — Functionriemannian_hamiltonian_elbo(
rhvae::RHVAE,
metric_param::NamedTuple,
x::AbstractArray;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
K::Int=3,
βₒ::Number=0.3f0,
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
G_inv=G_inv,
),
tempering_schedule::Function=quadratic_tempering,
return_outputs::Bool=false,
logp_prefactor::AbstractArray=ones(Float32, 3),
logq_prefactor::AbstractArray=ones(Float32, 3),
)Compute the Riemannian Hamiltonian Monte Carlo (RHMC) estimate of the evidence lower bound (ELBO) for a Riemannian Hamiltonian Variational Autoencoder (RHVAE).
This function takes as input an RHVAE, a NamedTuple of metric parameters, and a vector of input data x. It performs K RHMC steps with a leapfrog integrator and a tempering schedule to estimate the ELBO. The ELBO is computed as the difference between the log p̄ and log q̄ as
elbo = mean(log p̄ - log q̄),
Arguments
rhvae::RHVAE: The RHVAE used to encode the input data and decode the latent space.metric_param::NamedTuple: The parameters used to compute the metric tensor.x::AbstractArray: The input data. IfArray, the last dimension must contain each of the data points.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}: The step size for the leapfrog integrator (default is 0.01).K::Int: The number of RHMC steps (default is 3).βₒ::Number: The initial inverse temperature (default is 0.3).steps::Int: The number of leapfrog steps (default is 3).∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction. Defaults to a NamedTuple with:decoder_loglikelihoodset todecoder_loglikelihood,:position_logpriorset tospherical_logprior, and:momentum_logpriorset toriemannian_logprior.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Defaults toG_inv.tempering_schedule::Function: The tempering schedule function used in the RHMC (default isquadratic_tempering).return_outputs::Bool: Whether to return the outputs of the RHVAE. Defaults tofalse. NOTE: This is necessary to avoid computing the forward pass twice when computing the loss function with regularization.logp_prefactor::AbstractArray: A 3-element array to scale the log likelihood, log prior of the latent variables, and log prior of the momentum variables. Default is an array of ones.logq_prefactor::AbstractArray: A 3-element array to scale the log posterior of the initial latent variables, log prior of the initial momentum variables, and the tempering Jacobian term. Default is an array of ones.
Returns
elbo::Number: The RHMC estimate of the ELBO. Ifreturn_outputsistrue, also returns the outputs of the RHVAE.
riemannian_hamiltonian_elbo(
rhvae::RHVAE,
x::AbstractVector;
K::Int=3,
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
βₒ::Number=0.3f0,
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
G_inv=G_inv,
),
tempering_schedule::Function=quadratic_tempering,
return_outputs::Bool=false,
logp_prefactor::AbstractArray=ones(Float32, 3),
logq_prefactor::AbstractArray=ones(Float32, 3),
)Compute the Riemannian Hamiltonian Monte Carlo (RHMC) estimate of the evidence lower bound (ELBO) for a Riemannian Hamiltonian Variational Autoencoder (RHVAE).
This function takes as input an RHVAE, a NamedTuple of metric parameters, and a vector of input data x. It performs K RHMC steps with a leapfrog integrator and a tempering schedule to estimate the ELBO. The ELBO is computed as the difference between the log p̄ and log q̄ as
elbo = mean(log p̄ - log q̄)
Arguments
rhvae::RHVAE: The RHVAE used to encode the input data and decode the latent space.x::AbstractVector: The input data.
Optional Keyword Arguments
∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction. Defaults to a NamedTuple with:decoder_loglikelihoodset todecoder_loglikelihood,:position_logpriorset tospherical_logprior,:momentum_logpriorset toriemannian_logprior, and:G_invset toG_inv.K::Int: The number of RHMC steps (default is 3).ϵ::Union{<:Number,<:AbstractVector}: The step size for the leapfrog integrator (default is 0.001).βₒ::Number: The initial inverse temperature (default is 0.3).steps::Int: The number of leapfrog steps (default is 3).G_inv::Function: The function to compute the inverse of the Riemannian metric tensor (default isG_inv).tempering_schedule::Function: The tempering schedule function used in the RHMC (default isquadratic_tempering).return_outputs::Bool: Whether to return the outputs of the RHVAE. Defaults tofalse. NOTE: This is necessary to avoid computing the forward pass twice when computing the loss function with regularization.logp_prefactor::AbstractArray: A 3-element array to scale the log likelihood, log prior of the latent variables, and log prior of the momentum variables. Default is an array of ones.logq_prefactor::AbstractArray: A 3-element array to scale the log posterior of the initial latent variables, log prior of the initial momentum variables, and the tempering Jacobian term. Default is an array of ones.
Returns
elbo::Number: The RHMC estimate of the ELBO. Ifreturn_outputsistrue, also returns the outputs of the RHVAE.
riemannian_hamiltonian_elbo(
rhvae::RHVAE,
metric_param::NamedTuple,
x_in::AbstractArray,
x_out::AbstractArray;
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
K::Int=3,
βₒ::Number=0.3f0,
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
G_inv=G_inv,
),
tempering_schedule::Function=quadratic_tempering,
return_outputs::Bool=false,
logp_prefactor::AbstractArray=ones(Float32, 3),
logq_prefactor::AbstractArray=ones(Float32, 3),
)Compute the Riemannian Hamiltonian Monte Carlo (RHMC) estimate of the evidence lower bound (ELBO) for a Riemannian Hamiltonian Variational Autoencoder (RHVAE).
This function takes as input an RHVAE, a NamedTuple of metric parameters, and a vector of input data x. It performs K RHMC steps with a leapfrog integrator and a tempering schedule to estimate the ELBO. The ELBO is computed as the difference between the log p̄ and log q̄ as
elbo = mean(log p̄ - log q̄),
Arguments
rhvae::RHVAE: The RHVAE used to encode the input data and decode the latent space.metric_param::NamedTuple: The parameters used to compute the metric tensor.x_in::AbstractArray: Input data to the RHVAE encoder. The last dimension is taken as having each of the samples in a batch.x_out::AbstractArray: Target data to compute the reconstruction error. The last dimension is taken as having each of the samples in a batch.
Optional Keyword Arguments
ϵ::Union{<:Number,<:AbstractVector}: The step size for the leapfrog integrator (default is 0.01).K::Int: The number of RHMC steps (default is 3).βₒ::Number: The initial inverse temperature (default is 0.3).steps::Int: The number of leapfrog steps (default is 3).∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction. Defaults to a NamedTuple with:decoder_loglikelihoodset todecoder_loglikelihood,:position_logpriorset tospherical_logprior, and:momentum_logpriorset toriemannian_logprior.G_inv::Function: The function to compute the inverse of the Riemannian metric tensor. Defaults toG_inv.tempering_schedule::Function: The tempering schedule function used in the RHMC (default isquadratic_tempering).return_outputs::Bool: Whether to return the outputs of the RHVAE. Defaults tofalse. NOTE: This is necessary to avoid computing the forward pass twice when computing the loss function with regularization.logp_prefactor::AbstractArray: A 3-element array to scale the log likelihood, log prior of the latent variables, and log prior of the momentum variables. Default is an array of ones.logq_prefactor::AbstractArray: A 3-element array to scale the log posterior of the initial latent variables, log prior of the initial momentum variables, and the tempering Jacobian term. Default is an array of ones.
Returns
elbo::Number: The RHMC estimate of the ELBO. Ifreturn_outputsistrue, also returns the outputs of the RHVAE.
riemannian_hamiltonian_elbo(
rhvae::RHVAE,
x_in::AbstractArray,
x_out::AbstractArray;
K::Int=3,
ϵ::Union{<:Number,<:AbstractVector}=Float32(1E-4),
βₒ::Number=0.3f0,
steps::Int=3,
∇H_kwargs::NamedTuple=(
reconstruction_loglikelihood=decoder_loglikelihood,
position_logprior=spherical_logprior,
momentum_logprior=riemannian_logprior,
G_inv=G_inv,
),
tempering_schedule::Function=quadratic_tempering,
return_outputs::Bool=false,
logp_prefactor::AbstractArray=ones(Float32, 3),
logq_prefactor::AbstractArray=ones(Float32, 3),
)Compute the Riemannian Hamiltonian Monte Carlo (RHMC) estimate of the evidence lower bound (ELBO) for a Riemannian Hamiltonian Variational Autoencoder (RHVAE).
This function takes as input an RHVAE, a NamedTuple of metric parameters, and a vector of input data x. It performs K RHMC steps with a leapfrog integrator and a tempering schedule to estimate the ELBO. The ELBO is computed as the difference between the log p̄ and log q̄ as
elbo = mean(log p̄ - log q̄).
Arguments
rhvae::RHVAE: The RHVAE used to encode the input data and decode the latent space.x_in::AbstractArray: Input data to the RHVAE encoder. The last dimension is taken as having each of the samples in a batch.x_out::AbstractArray: Target data to compute the reconstruction error. The last dimension is taken as having each of the samples in a batch.
Optional Keyword Arguments
∇H_kwargs::NamedTuple: Additional keyword arguments to be passed to the∇hamiltonianfunction. Defaults to a NamedTuple with:decoder_loglikelihoodset todecoder_loglikelihood,:position_logpriorset tospherical_logprior,:momentum_logpriorset toriemannian_logprior, and:G_invset toG_inv.K::Int: The number of RHMC steps (default is 3).ϵ::Union{<:Number,<:AbstractVector}: The step size for the leapfrog integrator (default is 0.001).βₒ::Number: The initial inverse temperature (default is 0.3).steps::Int: The number of leapfrog steps (default is 3).G_inv::Function: The function to compute the inverse of the Riemannian metric tensor (default isG_inv).tempering_schedule::Function: The tempering schedule function used in the RHMC (default isquadratic_tempering).return_outputs::Bool: Whether to return the outputs of the RHVAE. Defaults tofalse. NOTE: This is necessary to avoid computing the forward pass twice when computing the loss function with regularization.logp_prefactor::AbstractArray: A 3-element array to scale the log likelihood, log prior of the latent variables, and log prior of the momentum variables. Default is an array of ones.logq_prefactor::AbstractArray: A 3-element array to scale the log posterior of the initial latent variables, log prior of the initial momentum variables, and the tempering Jacobian term. Default is an array of ones.
Returns
elbo::Number: The RHMC estimate of the ELBO. Ifreturn_outputsistrue, also returns the outputs of the RHVAE.
Default initializations
AutoEncoderToolkit.jl provides default initializations for both the metric tensor network and the RHVAE. Although less flexible than defining your own initial networks, these can serve as a good starting point for your experiments.
AutoEncoderToolkit.RHVAEs.MetricChain — MethodMetricChain(
n_input::Int,
n_latent::Int,
metric_neurons::Vector{<:Int},
metric_activation::Vector{<:Function},
output_activation::Function;
init::Function=Flux.glorot_uniform
) -> MetricChainConstruct a MetricChain for computing the Riemannian metric tensor in the latent space.
Arguments
n_input::Int: The number of input features.n_latent::Int: The dimension of the latent space.metric_neurons::Vector{<:Int}: The number of neurons in each hidden layer of the MLP.metric_activation::Vector{<:Function}: The activation function for each hidden layer of the MLP.output_activation::Function: The activation function for the output layer.init::Function: The initialization function for the weights in the layers (default isFlux.glorot_uniform).
Returns
MetricChain: AMetricChainobject that includes the MLP, and two dense layers for computing the elements of a lower-triangular matrix used to compute the Riemannian metric tensor in latent space.
AutoEncoderToolkit.RHVAEs.RHVAE — MethodRHVAE(
vae::VAE,
metric_chain::MetricChain,
centroids_data::AbstractArray,
T::Number,
λ::Number
)Construct a Riemannian Hamiltonian Variational Autoencoder (RHVAE) from a standard VAE and a metric chain.
Arguments
vae::VAE: A standard Variational Autoencoder (VAE) model.metric_chain::MetricChain: A chain of metrics to be used for the Riemannian Hamiltonian Monte Carlo (RHMC) sampler.centroids_data::AbstractArray: An array of data centroids. Each column represents a centroid.Nis a subtype ofNumber.T::N: The temperature parameter for the inverse metric tensor.Nis a subtype ofNumber.λ::N: The regularization parameter for the inverse metric tensor.Nis a subtype ofNumber.
Returns
- A new
RHVAEobject.
Description
The constructor initializes the latent centroids and the metric tensor M to their default values. The latent centroids are initialized to a zero matrix of the same size as centroids_data, and M is initialized to a 3D array of identity matrices, one for each centroid.